

GUÍA N°1 – TEORÍA DE CONJUNTOS.

Nombre	:		Curso: 7° Fecha://
Algunos	símbolos que se utilizan en matemática son:		
A	para todo	(paréntesis circular
3	existe	[paréntesis de corchete (o cuadrado)
∄	no existe	{	paréntesis de llaves
∃!	existe un único	x	valor absoluto de una cantidad "x"
€	pertenece a	4	ángulo
∉	no pertenece a	1	perpendicular a
\subset	subconjunto	:	por lo tanto
⊆	subconjunto o igual a	II	paralelo a
\supset	superconjunto	≅	congruente a
U	unión	~	semejante a
\cap	intersección	α	alfa
\Rightarrow	entonces	β	beta
\Leftrightarrow	si y sólo si	γ	gamma
	tal que	δ	delta
Λ	conector lógico y	ε	epsilón
V	conector lógico o	θ	theta
Ø	conjunto vacío	λ	lambda
{ }	conjunto vacío	π	pi
#	cardinalidad (en teoría de conjuntos)	φ	phi
#	paralelegramo (en geometría)	ω	omega
∞	infinito	Ω	omega mayúscula
=	es igual a	Σ	sigma mayúscula (símbolo de sumatoria)
≠	no es igual a (distinto de)	0	circunferencia
<	menor que	N	Conjunto de los números Naturales
\leq	menor o igual que	\mathbb{N}_0	Conjunto de los números Cardinales
< < < < < < < < < < < < < < < < < < <	mayor que	\mathbb{Z}	Conjunto de los números Enteros
>	mayor o igual que	Q	Conjunto de los números Racionales
≈	aproximadamente	I	Conjunto de los números Irracionales
=	idéntico a	\mathbb{R}	Conjunto de los números Reales

CONJUNTOS.

El concepto de conjunto es fundamental en todas las ramas de la matemática. El concepto de conjunto es primitivo y no se puede definir, pero intuitivamente un **conjunto** es una lista, colección o reunión de objetos con una característica en común. Los objetos que forman un conjunto se llaman **elementos**.

Ejemplos:

 $V = \{a, e, i, o, u\}$

 $A = \{rojo, amarillo, az\'ul\}$

 $B = \{lunes, martes, miércoles, jueves, viernes, sábado, domingo\}$

Observaciones:

- Los conjuntos se denotan por letras mayúsculas.
- Los elementos de los conjuntos se representan por letras minúsculas.

Un conjunto lo podemos expresar de dos formas:

Por extensión.

Significa enumerar todos sus elementos uno a uno separados por comas y encerrándolos entre paréntesis de llaves.

Ejemplos:

$$A = \{a, e, i, o, u\}$$

$$B = \{1,2,3,4,5\}$$

$$C = \{2,4,6,8\}$$

Por comprensión.

Significa enunciar los requisitos, propiedades o cualidad que deben tener los elementos del conjunto y solo ellos.

Ejemplos:

 $A = \{x | x \text{ es vocal del abecedario}\}$

 $B = \{x \in \mathbb{N} | x \le 5\}$

 $C = \{x | x \text{ es par menor a } 10\}$

DIAGRAMA DE VENN - EULER.

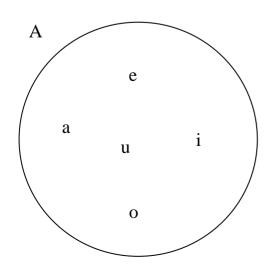
Los Diagramas de Venn – Euler, o simplemente Diagramas de Venn, son esquemas utilizados en la teoría de conjuntos para mostrar en forma ordenada los elementos de un conjunto encerrados por una circunferencia.

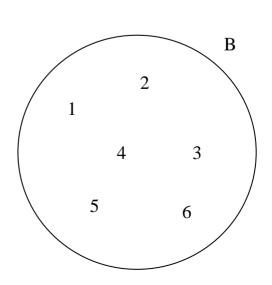
Ejemplo:

Sean los conjuntos

$$A = \{vocales \ del \ abecedario\}$$

$$B = \{x \in \mathbb{N} \mid x < 7\}$$





ACTIVIDAD 1.

Escribe por extensión los siguientes conjuntos.

a) $H = \{letras de la palabra SEPTIMO\}$

b) $J = \{letras de la palabra MATEMÁTICA\}$

c) $G = \{x \in \mathbb{N} \mid 1 < x < 5\}$

d) $P = \{x \in \mathbb{N} \mid x = 2p \land 2 < x < 8\}$

e) $M = \{x \in \mathbb{N} \mid x = 2n - 1 \land 1 < x \le 11\}$

ACTIVIDAD 2.

Escribe por comprensión los siguientes conjuntos.

a) $D = \{5, 6, 7, 8\}$

b) $L = \{7\}$

c) $C = \{11, 13, 15, 17, 19\}$

$$C = \{ \ldots \}$$

d) $T = \{2, 4, 6, 8\}$

e) $M = \{d, e, p, o, r, t\}$

ACTIVIDAD 3.

Representa en un Diagrama de Venn cada conjunto.

a)
$$Z = \{a, t, u, n\}$$

b)
$$W = \{x \in \mathbb{N} \mid 3 \le x < 10\}$$

PERTENENCIA.

Si un objeto x es elemento de un conjunto A, es decir, si A contiene a x como uno de sus elementos, se escribe $x \in A$ y se lee << x pertenece $a \land A >>$.

Si un objeto x no es elemento de un conjunto A, es decir, si A no contiene a x como uno de sus elementos, se escribe $x \notin A$ y se lee << x no pertenece a A >>.

Ejemplo:

Dado el conjunto $A = \{x \in \mathbb{N} \mid x < 5\}$ se puede afirmar que $\mathbf{1} \in A$, $\mathbf{2} \in A$, $\mathbf{3} \in A$, $\mathbf{4} \in A$, $\mathbf{5} \notin A$, $\mathbf{6} \notin A$, etc.

CARDINALIDAD DE CONJUNTOS (#).

Corresponde al número de elementos que tiene un conjunto.

Ejemplo:

Si
$$B = \{r, s, t\}$$
, entonces # $(B) = 3$

Observaciones:

- Si la cardinalidad de un conjunto es **finita**, significa que el número de sus elementos es **limitado**.
- Si la cardinalidad de un conjunto es **infinita**, significa que el número de sus elementos es **ilimitado**.

CONJUNTO UNIVERSO.

Es el conjunto de referencia que agrupa a todos los elementos existentes. El conjunto universo se denota por la letra U.

SUBCONJUNTOS.

Si todos los elementos de un conjunto **A** están en un conjunto **B**, se dice que **A** es subconjunto de **B** y se escribe $A \subset B$.

Ejemplo:

Dados los conjuntos $U = \{x \in \mathbb{N} \mid x < 7\}, A = \{2,4\} \text{ y } B = \{1,2,3,4,5\}.$



$$A \subset B$$

$$_ \subset U$$

$$A \subset _$$

Con los elementos de un conjunto se pueden formar varios subconjuntos.

Ejemplo:

Dado el conjunto $B = \{x \in | x < 5\}.$

Los subconjuntos que se pueden formar con los elementos de *B* son:

Observaciones:

- Todo subconjunto que tenga menos elementos que el conjunto del que forman parte, se llama **Subconjunto Propio**.
- El **conjunto vacío** es un conjunto que carece de elementos y se denota por el símbolo Ø o con dos llaves de conjunto separadas por un espacio en blanco { }.
- El conjunto vacío es subconjunto de todo conjunto.
- Un conjunto Unitario o Singleton es un conjunto que tiene sólo un elemento.
- Todo conjunto es subconjunto de sí mismo.

ACTIVIDAD 4.

Dados los conjuntos $A = \{1, 3, 5, 7, 9, 11\}$, $B = \{x \in \mathbb{N}_0 \mid x < 10\}$, $C = \{2, 4, 6\}$ indica si cada afirmación es Verdadera (V) o Falsa (F).

a) ____ 1 \in *A*

b) _____ 6 ∉ *A*

c) ____ 7 ∉ A

d) ____ $4 \in A$

e) ____ 1 \in *C*

f) _____ $3 \in B$

g) ____ 3 ∉ B

h) $2 \in C$

i) ____ 3 ∈ *A*

j) _____ 7 ∈ *C*

k) ____ 5 ∉ *B*

l) ____ 1 ∉ *A*

m) $_$ 9 \notin C

n) ____ 5 ∉ C

o) ____ 11 $\in B$

p) _____ 8 ∈ *B*

ACTIVIDAD 5.

Completa la siguiente tabla con la información correcta (Pertenencia y Cardinalidad).

Conjunto	Pertenencia	Cardinalidad
$P = \{a, b, c\}$	e P	# P =
$Q = \{x \in \mathbb{N} \mid 5 \le x < 12\}$	5 Q 12 Q	# Q =
$R = \{x \in \mathbb{N} \mid x = 2n - 1 \land 3 \le x < 9\}$	3 R 8 R	# R =

ACTIVIDAD 6.

Dado el conjunto universo $U = \mathbb{N}$. Sean los conjuntos $A = \{x \in \mathbb{N} \mid x = 5n \land x \le 20\}$, $S = \{2, 4, 6, 8\}$ $F = \{2\}$ $J = \{x \in \mathbb{N} \mid x < 11\}$. Determina si cada afirmación es Verdadera (V) o Falsa (F).

a) $A \subset U$

b) $\subseteq S \subset F$

c) ____ *J ⊄ S*

d) _____ $\{5\} \subset A$

e) _____ $\{6,8\} \subset U$

f) ____ $\{1,2\} \not\subset J$

g) ____ $\{2,3,4\} \subset J$

h) ____ $\{10, 20\} \not\subset A$

i) $\subseteq S \subset J$

j) ____ *F* ⊄ *A*

k) ____ *A* ⊄ *J*

1) $\subseteq J \subset U$

CONJUNTO POTENCIA.

El conjunto potencia es el conjunto que tiene por elementos a todos los subconjuntos de un conjunto. Es decir, el conjunto potencia $\mathcal{P}(A)$ es el conjunto formado por todos los subconjuntos de A.

La cardinalidad del conjunto potencia se puede determinar utilizando la expresión 2^n , donde n corresponde al número de elementos del conjunto.

Ejemplo:

Dado el conjunto $B = \{1, 2, 3, 4\}$. El conjunto potencia $\mathcal{P}(B)$ es:

$$\mathcal{P}(B) = \{\{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \emptyset\}$$

El conjunto B tiene n = 4 elementos, la expresión $2^4 = 2 \times 2 \times 2 \times 2$ determina la cantidad de subconjuntos que se pueden formar con los elementos de B. Es así que el conjunto potencia de B está formado por 16 elementos.

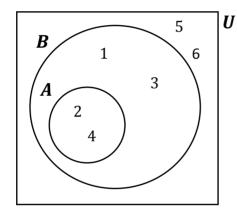
$$\therefore \quad \# \mathcal{P}(B) = 16$$

SUPERCONJUNTO.

B es superconjunto de A si A es subconjunto de B y se denota por $B \supset A$.

Ejemplo:

Dados los conjuntos $U = \{x \in \mathbb{N} \mid x < 7\}, A = \{2, 4\} \text{ y } B = \{1, 2, 3, 4\}.$



$$B \supset A$$

$$_ \supset A$$

$$U \supset _$$

<u>DIFERENCIA ENTRE PERTENEN</u>CIA E INCLUSIÓN.

Pertenencia.
Relacionar un **elemento** con un **conjunto**.
Se utiliza el símbolo ∈.

Inclusión.

Relacionar un **conjunto** con otro **conjunto**. Se utiliza el símbolo ⊂.

Ejemplo: Sea el conjunto $A = \{a, e, i, o, u\}$ << El elemento a pertenece al conjunto $A >> a \in A$ << El conjunto $\{a, e\}$ esta incluido (subconjunto de) en el conjunto $A >> \{a, e\} \subset A$.

CONJUNTOS EQUIVALENTES O COORDINABLES.

Dos conjuntos son equivalentes (o coordinables) si y solo si los conjuntos tienen igual cardinalidad. Los conjuntos equivalentes tienen correspondencia uno a uno.

Ejemplo:

$$A = \{1, 2, 3\}$$

$A = 3$

$$B = \{x, y, z\}$$
$$\# B = 3$$

CONJUNTOS IGUALES.

Dos conjuntos son iguales si y solo si ambos conjuntos están formados por los mismos elementos, sin importar el orden en que aparezcan.

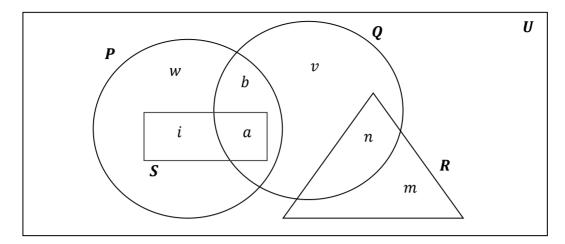
Ejemplo:

$$A = \{j, v, s\}$$
 y $B = \{s, j, v\}$

A y B son conjuntos iguales.

ACTIVIDAD 7.

Observa los conjuntos del siguiente diagrama y completa con los símbolos ∈, ∉, ⊂, ⊄ o ⊃ según corresponda.



a) *P* _____ *Q*

b) $m _{--} Q$

c) $\{m\}$ _____ R

d) n _____R

e) *P* _____*S*

f) {n} ____ Q

g) *P____U*

h) *U* _____ *Q*

i) $\{a,i\}$ _____S

j) b _____S

k) S _____P

1) w _____ *P*

m) $\{b, v\} ___Q$

n) Ø _____ *S*

ACTIVIDAD 8.

Escribe por extensión el conjunto potencia de cada conjunto.

a) $A = \{15\}$

 $\mathcal{P}(A) = \{\dots \dots \dots \dots \dots \}$

b) $B = \{a, b\}$

c) $C = \{x \in \mathbb{N} \mid 4 < x < 8\}$

ACTIVIDAD 9.

Escribe en la respuesta si el conjunto de la columna A es igual o equivalente al conjunto de la columna B

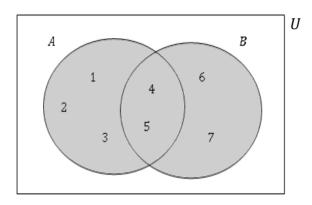
A	В	RESPUESTA.
$\{a,e,i,o,u\}$	$\{x \in \mathbb{N} \mid x \text{ es impar } \land x \leq 9\}$	
{0,1}	{x x es divisor de 17}	
$\{x \in \mathbb{N} \mid 4 < x < 8\}$	{7,5,6}	
$\{x \in \mathbb{N} \mid x + 4 = 12\}$	$\{x \in \mathbb{N} \mid x - 3 = 5\}$	

OPERACIONES ENTRE CONJUNTOS.

1. <u>Unión de conjuntos:</u> es la operación que nos permite agrupar los elementos de dos o más conjuntos en un nuevo conjunto. El símbolo que utilizamos es U.

Ejemplo:

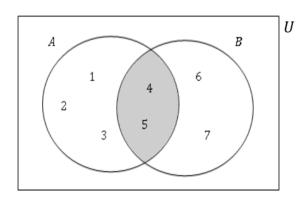
$$A = \{1, 2, 3, 4, 5\}$$
 y $B = \{4, 5, 6, 7\}$ entonces $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$



2. <u>Intersección de conjuntos:</u> es la operación que nos permite agrupar en un nuevo conjunto sólo los elementos que tienen en común los conjuntos. El símbolo que utilizamos es ∩.

Ejemplo:

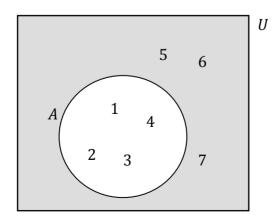
$$A = \{1, 2, 3, 4, 5\}$$
 y $B = \{4, 5, 6, 7\}$ entonces $A \cap B = \{4, 5\}$



- Si no existen elementos en común entre dos conjuntos, significa que la intersección es el conjunto vacío.
- Si la intersección de dos conjuntos es el conjunto vacío, entonces se dice que los **conjuntos son Disjuntos**.
- 3. <u>Complemento de conjuntos:</u> es el conjunto que agrupa a todos los elementos que faltan en un conjunto para completar el Universo de referencia.

Eiemplo:

Sean
$$A = \{1, 2, 3, 4\}$$
 y $U = \{1, 2, 3, 4, 5, 6, 7\}$ entonces el complemento del conjunto A es $A^C = \{5, 6, 7\}$.



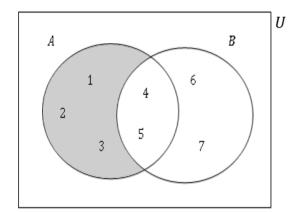
- El complemento del conjunto vacío es el conjunto universo.
- El complemento del conjunto universo es el conjunto vacío.

4. <u>Diferencia de conjuntos:</u> la diferencia de los conjuntos A y B es el conjunto de elementos que pertenecen a A, pero no a B. Es decir, es el conjunto de todos los elementos que pertenecen solo a A. Se denota A - B.

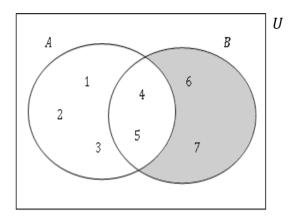
Ejemplo:

$$A = \{1, 2, 3, 4, 5\}$$
 y $B = \{4, 5, 6, 7\}$ entonces

$$A - B = \{1, 2, 3\}$$



$$B - A = \{6, 7\}$$



Observación:

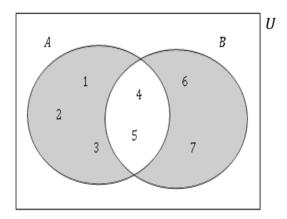
- La diferencia de A con B no es igual a la diferencia de B con A.

$$A - B \neq B - A$$

5. <u>Diferencia Simétrica:</u> la diferencia simétrica entre los conjuntos A y B corresponde al conjunto que se forma de todos los elementos que pertenecen solo a A o solo a B. El símbolo que ocupamos es Δ

Ejemplo:

$$\vec{A} = \{1, 2, 3, 4, 5\}$$
 y $\vec{B} = \{4, 5, 6, 7\}$ entonces $\vec{A} \Delta \vec{B} = \{1, 2, 3, 6, 7\}$



ACTIVIDAD 1	۱۱

Dados los conjuntos $U = \{x \in \mathbb{N} \mid x < 9\}$, $A = \{x \in \mathbb{N} \mid 2 \le x \le 8\}$, $B = \{1, 2, 3, 4\}$, $C = \{3, 4, 5, 6\}$. Escribe por extensión los siguientes conjuntos

i) $A \cup B \cup C = \{\dots \dots \dots \}$

1) $A-C=\{\dots\dots\}$

m) $A \Delta B = \{\dots \dots \dots \dots \dots \}$

ACTIVIDAD 11.

Dados los conjuntos $A = \{x \in \mathbb{N} \mid x < 6\}$, $B = \{x \in \mathbb{N} \mid x = 2n-1 \land 3 \le x \le 9 \land n \in \mathbb{N}\}$ y $C = \{x \in \mathbb{N} \mid 3 < x \le 8\}$.

a) Escriba por extensión los conjuntos A, B y C.

 $A = \{$

 $B = \{$

 $C = \{$

b) Escriba por extensión el conjunto $A \cup B \cup C$.

 $A \cup B \cup C = \{$

c) Escriba por extensión el conjunto $A \cap B \cap C$.

 $A \cap B \cap C = \{$

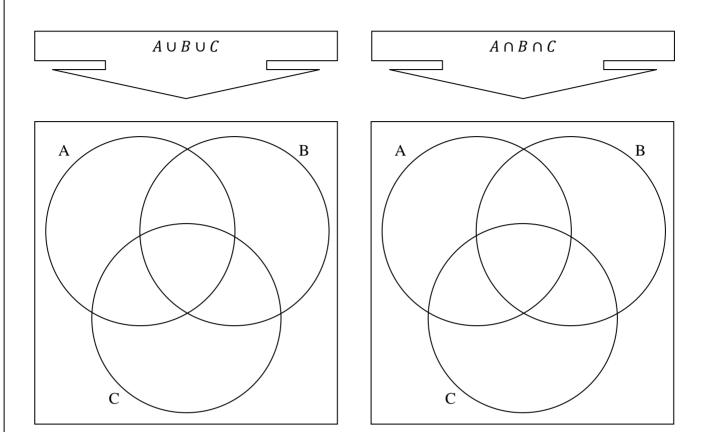
ACTIVIDAD 12.

Considerando los conjuntos A, B y C completa con los elementos cada diagrama de Venn y colorea el espacio correspondiente a la operación indicada.

$$A = \{x \in \mathbb{N} \mid x < 6\}$$

$$B = \{x \in \mathbb{N} \mid x = 2n - 1 \land 3 \le x \le 9 \land n \in \mathbb{N}\}$$

$$C = \{x \in \mathbb{N} \mid 3 < x \le 8\}$$



ACTIVIDAD 13.

Completa en forma correcta cada afirmación dada.

- a) Un intuitivamente es una agrupación de objetos.
- b) Un es un conjunto que forma parte de otro conjunto.
- c) Si queremos indicar que "7 es uno de los elementos del conjunto M", simbólicamente es
- d) El conjunto vacío es el que de elementos.
- e) Dos conjuntos son si tienen la misma cardinalidad
- f) Dos conjuntos son si tienen exactamente los mismos elementos.
- g) Un subconjunto es aquel que tiene menos elementos que su conjunto principal.
- h) El conjunto $F = \{a, b, c, d, e, f, g\}$ tiene Subconjuntos.
- i) El complemento del conjunto universo es el conjunto
- j) El conjunto es el complemento del conjunto vacío.
- k) La diferencia entre dos conjuntos A y B, corresponde al conjunto formado por todos los elementos de que no están en
- 1) Dos conjuntos son, si su intersección es el conjunto vacío.

RELACIONES.

CONCEPTO DE PAR ORDENADO.

Intuitivamente, un par ordenado consta de dos elementos, a y b, que siguen un orden preestablecido. Un par ordenado se simboliza por (a, b), donde el primer elemento del par ordenado se llama primera componente y el segundo elemento se llama segunda componente.

Observaciones:

- Dos pares ordenados (a, b) y (c, d) son iguales si y solo si a = c y b = d.
- El par ordenado $(a, b) \neq (b, a)$. Si cambiamos el orden de las componentes de un par, ellos serán diferentes.
- Puede haber pares ordenados que tengan las componentes iguales, por ejemplo (a, a)

PRODUCTO CARTESIANO.

Dados dos conjuntos A y B, se llama producto cartesiano de A y B al conjunto de todos los pares ordenados (a, b) con $a \in A$ y $b \in B$. Un producto cartesiano se denota por $A \times B$, se lee "A cruz B".

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Si el conjunto A tiene m elementos y el conjunto B tiene n elementos, entonces $\#(A \times B) = m \cdot n$

Ejemplo:

Sea el conjunto universal $U = \mathbb{N}$, donde $A = \{1, 2\}$ y $B = \{3, 4, 5\}$. Entonces,

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

$A = 2 \land \# B = 3 \implies \# (A \times B) = 6$

ACTIVIDAD 14.

Dados los conjuntos $A = \{1, 3, 5\}$ y $B = \{2, 4\}$.

a) Calcule la cardinalidad de $A \times B$

 $\#(A \times B) = \dots$

b) Calcule la cardinalidad de $B \times A$

 $\#(A \times B) = \dots$

c) Escriba por extensión el conjunto $A \times B$

d) Escriba por extensión el conjunto $B \times A$

ACTIVIDAD 15.

Dados los conjuntos $A = \{1, 2, 3, 4\}$ y $B = \{1, 2, 3\}$.

a) Calcule la cardinalidad de $A \times B$

 $\#(A \times B) = \dots$

b) Calcule la cardinalidad de $B \times A$

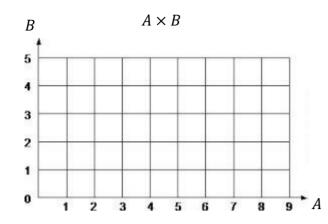
 $\#(A \times B) = \dots$

c) Escriba por extensión el conjunto $A \times B$

d) Escriba por extensión el conjunto $B \times A$

ACTIVIDAD 16.

Representa gráficamente los conjuntos $A \times B$ y $A \times B$ de la "Actividad 14".





Observa las gráficas, ¿Qué puedes concluir respecto a $A \times B$ y $B \times A$?

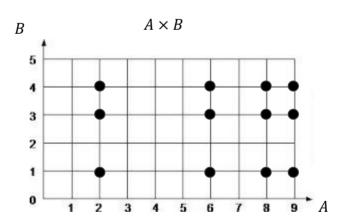
.....

.....

Simbólicamente se puede escribir:

ACTIVIDAD 17.

Observa el gráfico y escribe por extensión los conjuntos A, B y $A \times B$.



RELACIÓN.

Dados los conjuntos A y B no vacíos, se llama relación definida de A en B a cualquier subconjunto del producto cartesiano $A \times B$.

$$R$$
 es relación definida de A en $B \iff R \subseteq A \times B$

 $(a,b) \in R$ se escribe también a R b, y se lee "el elemento a está relacionado con el elemento b"

Una relación es un conjunto de pares ordenados, se denota $R:A \to B$

Observaciones:

- $(a,b) \in R \iff a R b$
- $(a,b) \notin R \iff a \not R b$
- Si el conjunto A tiene m elementos y el conjunto B tiene n elemento, entonces hay $2^{m \cdot n}$ relaciones distintas entre A y B. como $A \times B$ tiene $m \cdot n$ elementos, tiene $2^{m \cdot n}$ subconjuntos diferentes.

Ejemplos:

- a) Sean $A = \{1, 2, 3\}$ y $B = \{a, b\}$. Entonces una relación R es $R = \{(1, a), (1, b), (3, a)\}$
- b) Sean $A = \{2, 3, 4\}$ y $B = \{4, 6\}$. Entonces una relación R es $R = \{(a, b) | a \in A \land b \in B, b = a \cdot n, n \in \mathbb{N}\}$, escrito por extensión es $R = \{(2, 4), (2, 6), (3, 6), (4, 4)\}$

DOMINIO Y RECORRIDO DE UNA RELACIÓN.

Sea $R: A \rightarrow B$ una relación y $(a, b) \in R$.

Se denomina **pre-imagen** a la primera componente de un par ordenado. Al conjunto de todas las pre-imágenes se le denomina **Dominio de la relación**.

$$Dom R = \{a \in A \mid \exists b \in B \land a R b\} \subset A$$

Se denomina **imagen** a la segunda componente de un par ordenado. Se denota b = R(a). Al conjunto de todas las imágenes se le denomina **Recorrido de la relación**.

$$Rec R = \{b \in B | \exists a \in A \land a R b\} \subset B$$

Ejemplos:

a) Dada la relación $R = \{(1, a), (1, b), (3, a)\}$

Dom
$$R = \{1, 3\}$$

Rec $R = \{a, b\}$

b) Dada la relación $R = \{(2,7), (3,8), (4,7), (5,8)\}$

Dom
$$R = \{2, 3, 4, 5\}$$

Rec $R = \{7, 8\}$

ACTIVIDAD 18.

Dado los conjuntos A y B, escriba por extensión cada relación R.

a)
$$A = \{1, 2, 3, 4\}$$
 y $B = \{1, 3, 5\}$. $R = \{(x, y) \mid x < y\}$

b)
$$A = \{2, 3, 4, 5\}$$
 y $B = \{3, 6, 7, 10\}$. $R = \{(x, y) \mid y : x \in \mathbb{N}\}$

ACTIVIDAD 19.

Sea R una relación definida en los números naturales, donde $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} | x + 3y = 12 \}$

a) Escriba por extensión la relación *R*.

 $R = \{\dots \dots \dots \dots \dots \}$

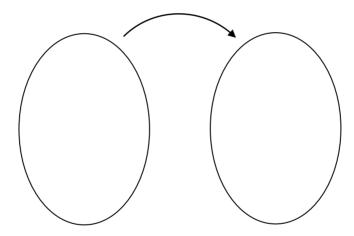
b) Escriba por comprensión el dominio de la relación R.

 $Dom\ R = \{\dots \dots \dots \dots \dots \}$

c) Escriba por comprensión el recorrido de la relación R.

 $Rec\ R = \{\dots \dots \dots \}$

d) Representa la relación R en un diagrama sagital.



e) Graficar la relación R en un plano cartesiano. Recuerda dar nombre a los ejes cartesianos.

